Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.118
1.
Free Radic Biol Med ; 216: 89-105, 2024 Apr.
Article En | MEDLINE | ID: mdl-38494143

Ischemia Stroke (IS) is an acute neurological condition with high morbidity, disability, and mortality due to a severe reduction in local cerebral blood flow to the brain and blockage of oxygen and glucose supply. Oxidative stress induced by IS predisposes neurons to ferroptosis. TP53-induced glycolysis and apoptosis regulator (TIGAR) inhibits the intracellular glycolytic pathway to increase pentose phosphate pathway (PPP) flux, promotes NADPH production and thus generates reduced glutathione (GSH) to scavenge reactive oxygen species (ROS), and thus shows strong antioxidant effects to ameliorate cerebral ischemia/reperfusion injury. However, in the current study, prolonged ischemia impaired the PPP, and TIGAR was unable to produce NADPH but was still able to reduce neuronal ferroptosis and attenuate ischemic brain injury. Ferroptosis is a form of cell death caused by free radical-driven lipid peroxidation, and the vast majority of ROS leading to oxidative stress are generated by mitochondrial succinate dehydrogenase (SDH) driving reverse electron transfer (RET) via the mitochondrial electron transport chain. Overexpression of TIGAR significantly inhibited hypoxia-induced enhancement of SDH activity, and TIGAR deficiency further enhanced SDH activity. We also found that the inhibitory effect of TIGAR on SDH activity was related to its mitochondrial translocation under hypoxic conditions. TIGAR may inhibit SDH activity by mediating post-translational modifications (acetylation and succinylation) of SDH A through interaction with SDH A. SDH activity inhibition reduces neuronal ferroptosis by decreasing ROS production, eliminating MitoROS levels and attenuating lipid peroxide accumulation. Notably, TIGAR-mediated inhibition of SDH activity and ferroptosis was not dependent on the PPP-NADPH-GPX4 pathways. In conclusion, mitochondrial translocation of TIGAR in prolonged ischemia is an important pathway to reduce neuronal ferroptosis and provide sustainable antioxidant defense for the brain under prolonged ischemia, further complementing the mechanism of TIGAR resistance to oxidative stress induced by IS.


Brain Ischemia , Ferroptosis , Reperfusion Injury , Humans , Reactive Oxygen Species/metabolism , Succinate Dehydrogenase/metabolism , NADP/metabolism , Brain Ischemia/genetics , Brain Ischemia/metabolism , Apoptosis Regulatory Proteins/metabolism , Cerebral Infarction/metabolism , Glycolysis , Reperfusion Injury/metabolism , Hypoxia/metabolism , Neurons/metabolism
2.
Sci Rep ; 14(1): 3187, 2024 02 07.
Article En | MEDLINE | ID: mdl-38326353

Global cerebral ischemia (GCI) caused by clinical conditions such as cardiac arrest leads to delayed neuronal death in the hippocampus, resulting in physical and mental disability. However, the mechanism of delayed neuronal death following GCI remains unclear. To elucidate the mechanism, we performed a metabolome analysis using a mouse model in which hypothermia (HT) during GCI, which was induced by the transient occlusion of the bilateral common carotid arteries, markedly suppressed the development of delayed neuronal death in the hippocampus after reperfusion. Fifteen metabolites whose levels were significantly changed by GCI and 12 metabolites whose levels were significantly changed by HT were identified. Furthermore, the metabolites common for both changes were narrowed down to two, adenosine monophosphate (AMP) and xanthosine monophosphate (XMP). The levels of both AMP and XMP were found to be decreased by GCI, but increased by HT, thereby preventing their decrease. In contrast, the levels of adenosine, inosine, hypoxanthine, xanthine, and guanosine, the downstream metabolites of AMP and XMP, were increased by GCI, but were not affected by HT. Our results may provide a clue to understanding the mechanism by which HT during GCI suppresses the development of delayed neuronal death in the hippocampus.


Brain Ischemia , Hypothermia , Ribonucleotides , Humans , Hypothermia/metabolism , Brain Ischemia/metabolism , Xanthine/metabolism , Cerebral Infarction/metabolism , Hippocampus/metabolism , Adenosine Monophosphate/metabolism
3.
Acta Neuropathol Commun ; 12(1): 10, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38229173

Mesencephalic astrocyte-derived neurotrophic factor (MANF) has cytoprotective effects on various injuries, including cerebral ischemia, and it can promote recovery even when delivered intracranially several days after ischemic stroke. In the uninjured rodent brain, MANF protein is expressed almost exclusively in neurons, but post-ischemic MANF expression has not been characterized. We aimed to investigate how endogenous cerebral MANF protein expression evolves in infarcted human brains and rodent ischemic stroke models. During infarct progression, the cerebral MANF expression pattern both in human and rat brains shifted drastically from neurons to expression in inflammatory cells. Intense MANF immunoreactivity took place in phagocytic microglia/macrophages in the ischemic territory, peaking at two weeks post-stroke in human and one-week post-stroke in rat ischemic cortex. Using double immunofluorescence and mice lacking MANF gene and protein from neuronal stem cells, neurons, astrocytes, and oligodendrocytes, we verified that MANF expression was induced in microglia/macrophage cells in the ischemic hemisphere. Embarking on the drastic expression transition towards inflammatory cells and the impact of blood-borne inflammation in stroke, we hypothesized that exogenously delivered MANF protein can modulate tissue recovery processes. In an attempt to enhance recovery, we designed a set of proof-of-concept studies using systemic delivery of recombinant MANF in a rat model of cortical ischemic stroke. Intranasal recombinant MANF treatment decreased infarct volume and reduced the severity of neurological deficits. Intravenous recombinant MANF treatment decreased the levels of pro-inflammatory cytokines and increased the levels of anti-inflammatory cytokine IL-10 in the infarcted cortex one-day post-stroke. In conclusion, MANF protein expression is induced in activated microglia/macrophage cells in infarcted human and rodent brains, and this could implicate MANF's involvement in the regulation of post-stroke inflammation in patients and experimental animals. Moreover, systemic delivery of recombinant MANF shows promising immunomodulatory effects and therapeutic potential in experimental ischemic stroke.


Ischemic Stroke , Stroke , Humans , Rats , Mice , Animals , Ischemic Stroke/metabolism , Rats, Sprague-Dawley , Brain/metabolism , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Nerve Growth Factors/therapeutic use , Stroke/metabolism , Cerebral Infarction/metabolism , Inflammation/metabolism
4.
J Biomol Struct Dyn ; 42(2): 1064-1071, 2024.
Article En | MEDLINE | ID: mdl-37114509

This study investigated the effects of isosakuranetin (5,7-dihydroxy-4'-methoxyflavanone) on cerebral infarction and blood brain barrier (BBB) damage in cerebral ischemia and reperfusion (I/R) in a rat model. The right middle cerebral artery was occluded for 2 h followed by reperfusion. The experimental rats were divided into five groups: a sham, or control group; vehicle group; and 5 mg/kg, 10 mg/kg, and 20 mg/kg bodyweight isosakuranetin-treated I/R groups. After 24 h of reperfusion, the rats were tested using a six-point neurological function score. The percentage of cerebral infarction was evaluated using 2,3,5-triphenyltetrazolium chloride (TTC) staining. BBB leakage was determined by Evan Blue injection assay and brain morphology changes were observed under light microscopy following staining with hematoxylin and eosin (H&E). The results of neurological function score revealed that isosakuranetin reduced the severity of neurological damage. A dose of 10 and 20 mg/kg bodyweight of isosakuranetin significantly decreased the infarct volume. All three doses of isosakuranetin significantly decreased Evan Blue leakage. The penumbra area of the I/R brains revealed the characteristics of apoptotic cell death. Therefore, isosakuranetin-treated I/R attenuated the brain damage from cerebral I/R injury and further investigation of the mechanisms warrant further investigation to assist in the development of protective strategies against cerebral I/R injury in clinical trials.Communicated by Ramaswamy H. Sarma.


Brain Ischemia , Flavonoids , Reperfusion Injury , Rats , Animals , Blood-Brain Barrier , Rats, Sprague-Dawley , Evans Blue/metabolism , Evans Blue/pharmacology , Evans Blue/therapeutic use , Cerebral Infarction/drug therapy , Cerebral Infarction/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism
5.
Mol Neurobiol ; 61(4): 2099-2119, 2024 Apr.
Article En | MEDLINE | ID: mdl-37848729

The SUR1-TRPM4-AQP4 complex is overexpressed in the initial phase of edema induced after cerebral ischemia, allowing the massive internalization of Na+ and water within the brain micro endothelial cells (BMEC) of the blood-brain barrier. The expression of the Abcc8 gene encoding SUR1 depends on transcriptional factors that are responsive to oxidative stress. Because reactive oxygen species (ROS) are generated during cerebral ischemia, we hypothesized that antioxidant compounds might be able to regulate the expression of SUR1. Therefore, the effect of resveratrol (RSV) on SUR1 expression was evaluated in the BMEC cell line HBEC-5i subjected to oxygen and glucose deprivation (OGD) for 2 h followed by different recovery times. Different concentrations of RSV were administered. ROS production was detected with etidine, and protein levels were evaluated by Western blotting and immunofluorescence. Intracellular Na+ levels and cellular swelling were detected by imaging; cellular metabolic activity and rupture of the cell membrane were detected by MTT and LDH release, respectively; and EMSA assays measured the activity of transcriptional factors. OGD/recovery increased ROS production induced the AKT kinase activity and the activation of SP1 and NFκB. SUR1 protein expression and intracellular Na+ concentration in the HBEC-5i cells increased after a few hours of OGD. These effects correlated with cellular swelling and necrotic cell death, responses that the administration of RSV prevented. Our results indicate that the ROS/AKT/SP1-NFκB pathway is involved in SUR1 expression during OGD/recovery in BMEC of the blood-brain barrier. Thus, RSV prevented cellular edema formation through modulation of SUR1 expression.


Brain Ischemia , Oxygen , Humans , Resveratrol/pharmacology , Oxygen/metabolism , Endothelial Cells/metabolism , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Glucose/metabolism , Brain/metabolism , Brain Ischemia/metabolism , Cerebral Infarction/metabolism , Edema
6.
Neurosci Lett ; 819: 137578, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38048875

Persistent post-ischemic alterations to the hypothalamic-pituitary-adrenal (HPA) axis occur following global cerebral ischemia (GCI) in rodents. However, similar effects on hypothalamic-pituitary-gonadal (HPG) axis activation remain to be determined. Therefore, this study evaluated the effects of GCI in adult female rats (via four-vessel occlusion) on the regularity of the estrous cycle for 24-days post ischemia. A second objective aimed to assess persistent alterations of HPG axis activation through determination of the expression of estrogen receptor alpha (ERα), kisspeptin (Kiss1), and gonadotropin-inhibitory hormone (GnIH/RFamide-related peptide; RFRP3) in the medial preoptic area (POA), arcuate nucleus (ARC), dorsomedial nucleus (DMH) of the hypothalamus, and CA1 of the hippocampus 25 days post ischemia. Expression of glucocorticoid receptors (GR) in the paraventricular nucleus of the hypothalamus (PVN) and CA1 served as a proxy of altered HPA axis activation. Our findings demonstrated interruption of the estrous cycle in 87.5 % of ischemic rats, marked by persistent diestrus, lasting on average 11.86 days. Moreover, compared to sham-operated controls, ischemic female rats showed reduced Kiss1 expression in the hypothalamic ARC and POA, concomitant with elevated ERα in the ARC and increased GnIH in the DMH and CA1. Reduced GR expression in the CA1 was associated with increased GR-immunoreactivity in the PVN, indicative of lasting dysregulation of HPA axis activation. Together, these findings demonstrate GCI disruption of female rats' estrous cycle over multiple days, with a lasting impact on HPG axis regulators within the reproductive axis.


Brain Ischemia , Hypothalamo-Hypophyseal System , Rats , Female , Animals , Hypothalamo-Hypophyseal System/metabolism , Kisspeptins/metabolism , Hypothalamic-Pituitary-Gonadal Axis , Estrogen Receptor alpha/metabolism , Pituitary-Adrenal System/metabolism , Hypothalamus/metabolism , Estrous Cycle/metabolism , Brain Ischemia/metabolism , Cerebral Infarction/metabolism , Periodicity
7.
Chem Biol Interact ; 387: 110807, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-37980971

This study aimed to treat diabetic cerebral ischemia-reperfusion injury (CI/RI) by affecting blood brain barrier (BBB) permeability and integrity. The CI/RI model in DM mice and a high glucose (HG) treated oxygen and glucose deprivation/reoxygenation (OGD/R) brain endothelial cell model were established for the study. Evans blue (EB) staining was used to evaluate the permeability of BBB in vivo. TTC staining was used to analyze cerebral infarction. The location and expression of tribbles homolog 3 (TRIB3) in endothelial cells were detected by immunofluorescence. Western blotting was used to detect the protein expressions of TRIB3, tight junction molecules, adhesion molecules, phosphorylated protein kinase B (p-AKT) and AKT. The levels of pro-inflammatory cytokines were detected by qRT-PCR. Trans-epithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran were used to measure vascular permeability in vitro. TRIB3 ubiquitination and acetylation levels were detected. Acetyltransferase bound to TRIB3 were identified by immunoprecipitation. TRIB3 was localized in cerebral endothelial cells and was highly expressed in diabetic CI/R mice. The BBB permeability in diabetic CI/R mice and HG-treated OGD/R cells was increased, while the junction integrity was decreased. Interference with TRIB3 in vitro reduces BBB permeability and increases junction integrity. In vivo interfering with TRIB3 reduced cerebral infarction volume, BBB permeability and inflammation levels, and upregulated p-AKT levels. The phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin reversed the effects of TRIB3-interfering plasmid. In vitro HG treatment induced TRIB3 acetylation through acetyltransferase p300, which in turn reduced ubiquitination and stabilized TRIB3. Interfering TRIB3 protects BBB by activating PI3K/AKT pathway and alleviates brain injury, which provides a new target for diabetic CI/RI.


Brain Ischemia , Diabetes Mellitus , Reperfusion Injury , Mice , Animals , Blood-Brain Barrier , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Endothelial Cells , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinase/pharmacology , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Cerebral Infarction/metabolism , Oxygen/metabolism , Glucose/metabolism , Acetyltransferases/metabolism , Acetyltransferases/pharmacology , Diabetes Mellitus/metabolism
8.
J Cereb Blood Flow Metab ; 44(2): 224-238, 2024 02.
Article En | MEDLINE | ID: mdl-37898107

Ischemic stroke causes secondary neurodegeneration in the thalamus ipsilateral to the infarction site and impedes neurological recovery. Axonal degeneration of thalamocortical fibers and autophagy overactivation are involved in thalamic neurodegeneration after ischemic stroke. However, the molecular mechanisms underlying thalamic neurodegeneration remain unclear. Sterile /Armadillo/Toll-Interleukin receptor homology domain protein (SARM1) can induce Wallerian degeneration. Herein, we aimed to investigate the role of SARM1 in thalamic neurodegeneration and autophagy activation after photothrombotic infarction. Neurological deficits measured using modified neurological severity scores and adhesive-removal test were ameliorated in Sarm1-/- mice after photothrombotic infarction. Compared with wild-type mice, Sarm1-/- mice exhibited unaltered infarct volume; however, there were markedly reduced neuronal death and gliosis in the ipsilateral thalamus. In parallel, autophagy activation was attenuated in the thalamus of Sarm1-/- mice after cerebral infarction. Thalamic Sarm1 re-expression in Sarm1-/- mice increased thalamic neurodegeneration and promoted autophagy activation. Auotophagic inhibitor 3-methyladenine partially alleviated thalamic damage induced by SARM1. Moreover, autophagic initiation through rapamycin treatment aggravated post-stroke neuronal death and gliosis in Sarm1-/- mice. Taken together, SARM1 contributes to secondary thalamic neurodegeneration after cerebral infarction, at least partly through autophagy inhibition. SARM1 deficiency is a potential therapeutic strategy for secondary thalamic neurodegeneration and functional deficits after stroke.


Ischemic Stroke , Stroke , Mice , Animals , Gliosis , Cerebral Infarction/metabolism , Stroke/metabolism , Ischemic Stroke/metabolism , Thalamus/metabolism , Axons/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism
9.
Neurosci Lett ; 818: 137553, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37949291

Disruption of the blood-brain barrier (BBB) following cerebral ischemia-reperfusion injury (CIRI) is a major factor in the pathophysiology of stroke. Endothelial cell-cell communication is essential for maintaining BBB integrity. By analyzing GSE227651 data, we found that a decrease in endothelial cell-cell communication mediated by Sema3/Nrp1 may be due to the downregulation of Nrp1 transcription, which could contribute to BBB breakdown after CIRI. We confirmed this hypothesis by using western blot analysis to show a reduction in Nrp1 protein levels in penumbra endothelial cells after CIRI in mice. We then overexpressed Nrp1 specifically in brain endothelial cells using adeno-associated virus in mice. Furthermore, Nrp1 overexpression had a protective effect on BBB integrity, as evidenced by a decrease in IgG and albumin leakage caused by CIRI in mice. Finally, we found that Nrp1 overexpression also reduced brain cell death and neurological deficits induced by cerebral ischemia-reperfusion in mice. Our findings suggest that Nrp1 downregulation may be a key factor in the breakdown of endothelial cell-cell communication and subsequent BBB disruption following CIRI. Targeting Nrp1-mediated pathways may be a promising approach for mitigating BBB damage and alleviating neurological consequences in stroke patients.


Blood-Brain Barrier , Brain Ischemia , Reperfusion Injury , Stroke , Animals , Humans , Mice , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain Ischemia/metabolism , Cerebral Infarction/metabolism , Down-Regulation , Endothelial Cells/metabolism , Infarction, Middle Cerebral Artery/metabolism , Neuropilin-1/metabolism , Reperfusion/adverse effects , Reperfusion Injury/metabolism
10.
Cell Mol Biol (Noisy-le-grand) ; 69(12): 150-155, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-38063101

To investigate the effect of micro ribonucleic acid (miR)-211 on the apoptosis of nerve cells in rats with cerebral infarction through phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. A total of 36 Sprague-Dawley (SD) rats were randomly divided into sham operation group (n=12), model group (n=12) and miR-211 mimics group (n=12). Only the common carotid artery, external carotid artery, and internal carotid artery were exposed in sham operation group, and the models of cerebral infarction were constructed via suture method in the other two groups. After modeling, the rats in sham operation group and model group were intraperitoneally injected with normal saline, while those in miR-211 mimics group were given miR-211 mimics via intraperitoneal injection. At 2 weeks after intervention, samples were collected. Neurological deficit in rats was assessed using the Zea-longa score, and Nissl staining assay was performed to observe neuronal morphology. Western blotting (WB), quantitative polymerase chain reaction (qPCR) assay and enzyme-linked immunosorbent assay (ELISA) were employed to measure the relative protein expressions of PI3K and phosphorylated AKT (p-AKT), mRNA expression of miR-211 and content of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax), respectively. Additionally, the apoptosis was detected via terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) assay. The neuronal morphology was normal in sham operation group, while it was disordered in model group, with damaged neurons. In miR-211 mimics group, the morphology of neurons was improved. The Zea-longa score was obviously higher in model group and miR-211 mimics group than that in sham operation group (P<0.05), while it was notably lower in miR-211 mimics group than that in model group (P<0.05). Compared with those in sham operation group, the relative protein expression levels of PI3K and p-AKT remarkably declined in model group and miR-211 mimics group (P<0.05), whereas they were clearly higher in miR-211 mimics group than those in model group (P<0.05). The relative expression level of miR-211 was lower in model group and miR-211 mimics group than that in sham operation group (P<0.05), while it was markedly higher in miR-211 mimics group than that in model group (P<0.05). In comparison with sham operation group, model group and miR-211 mimics group had remarkably increased content of Bax and evidently lowered content of Bcl-2 (P<0.05), whereas compared with model group, miR-211 mimics group displayed clearly reduced Bax content and notably raised Bcl-2 content (P<0.05). The apoptosis rate was distinctly higher in model group and miR-211 mimics group than that in sham operation group (P<0.05), while it was visibly lower in miR-211 mimics group than that in model group (P<0.05). MiR-211 represses the apoptosis of nerve cells in rats with cerebral infarction by up-regulating the PI3K/AKT signaling pathway, thereby protecting nerves.


Cerebral Infarction , MicroRNAs , Animals , Rats , Apoptosis/genetics , bcl-2-Associated X Protein/metabolism , Cerebral Infarction/genetics , Cerebral Infarction/metabolism , Disease Models, Animal , MicroRNAs/metabolism , Neurons/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction
11.
Exp Brain Res ; 241(11-12): 2735-2750, 2023 Dec.
Article En | MEDLINE | ID: mdl-37845379

Stroke is reported to be the second leading cause of death worldwide, among which ischemic stroke has fourfold greater incidence than intracerebral hemorrhage. Excitotoxicity induced by NMDAR plays a central role in ischemic stroke-induced neuronal death. However, intervention targeted NMDARs against ischemic stroke has failed, which may result from the complex composition of NMDARs and the dynamic changes of their subunits. In this current study, the levels of NR1, NR2A and NR2B subunits of NMDARs were observed upon different time points during the reperfusion after 1 h ischemia with the western blot assay. It was found that the changes of NR1 subunit were only detected after ischemia 1 h/reperfusion 1 day (1 d). While, the changes of NR2A and NR2B subunits may last to ischemia 1 h/reperfusion 7 day(7 d), indicating that NR2subunits may be a potential target for ischemia-reperfusion injuries at the sub-acute stage of ischemic stroke. Simultaneously, mitochondrial injuries in neurons were investigated with transmission electron microscopy (TEM), and mitochondrial dysfunction was evaluated with mitochondrial membrane proteins oxidative respiratory chain complex and OCR. When the antagonist of NMDARs was used before ischemic exposure, the neuronal mitochondrial dysfunction was alleviated, suggesting that these aberrant deviations of NMDARs from basal levels led to mitochondrial dysfunction. Furthermore, when the antagonist of NR2B was administrated intracerebroventricularly at the sub-acute cerebral ischemia, the volume of cerebral infarct region was decreased and the neural functions were improved. To sum up, the ratio of NR2B-containing NMDARs is vital for mitochondrial homeostasis and then neuronal survival. NR2B-targeted intervention should be chosen at the sub-acute stage of cerebral ischemia.


Brain Ischemia , Ischemic Stroke , Humans , Brain Ischemia/complications , Brain Ischemia/drug therapy , Receptors, N-Methyl-D-Aspartate/metabolism , Cerebral Infarction/metabolism , Ischemic Stroke/metabolism , Neurons/metabolism
12.
Cell Mol Biol (Noisy-le-grand) ; 69(9): 239-244, 2023 Sep 30.
Article En | MEDLINE | ID: mdl-37807305

To study the influence of long non-coding ribonucleic acid maternally expressed gene 3 (lncRNA MEG3) on the neuronal apoptosis in rats with ischemic cerebral infarction, and to analyze its regulatory effect on the transforming growth factor-beta 1 (TGF-ß1) pathway. A total of 36 Sprague-Dawley rats were randomly assigned into sham group, model group and low expression group. Ischemic cerebral infarction modeling was constructed in rats of the model group and low expression group. Corresponding adenoviruses were intracranially injected in rats of low expression group to knock down lncRNA MEG3 expression. At 24 h after the operation, the neurological function of rats was evaluated in each group, and the expression level of lncRNA MEG3 in cerebral tissues was determined using quantitative polymerase chain reaction (qPCR). The infarct size was measured via 2,3,5-triphenyltetrazolium chloride (TTC) staining. The apoptosis level of neurons in cerebral tissues was determined using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Besides, enzyme-linked immunosorbent assay (ELISA) was performed to determine the contents of inflammatory factors in cerebral tissues. Expression levels of apoptosis-associated proteins and vital genes in the TGF-ß1 signaling pathway in rat cerebral tissues were measured using Western blotting. Compared with the sham group, rats in the model group exhibited substantial increases in the neurological score and apoptosis level of neurons (p<0.01). Relative levels of lncRNA MEG3, interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), Caspase-3, TGF-ß1, small mothers against decapentaplegic homolog 2 (Smad2) and Smad3 (p<0.01) were higher in a model group than those in sham group. Notable declines in the content of IL-10 (p<0.01) and the ratio of B-cell lymphoma 2 (Bcl-2)/Bcl associated X protein (Bax) (p<0.01) were seen in the model group compared with the sham group. The abovementioned changes in the model group were partially abolished in the low expression group. LncRNA MEG3 is upregulated in the cerebral tissues of rats with ischemic cerebral infarction. It induces an inflammatory response, expands cerebral infarct size, and promotes neuronal apoptosis and impairment by activating the TGF-ß1 pathway.


Apoptosis , Cerebral Infarction , RNA, Long Noncoding , Animals , Rats , Apoptosis/genetics , Cerebral Infarction/genetics , Cerebral Infarction/metabolism , Disease Models, Animal , Rats, Sprague-Dawley , RNA, Long Noncoding/genetics , Signal Transduction , Transforming Growth Factor beta1/metabolism
13.
Folia Neuropathol ; 61(3): 242-248, 2023.
Article En | MEDLINE | ID: mdl-37818685

Involving in the immune response after cerebral infarction, astrocytes could secrete large amounts of pro- and anti-inflammatory factors. The aim of this study is to investigate the effect of Wnt3a intervention on the inflammatory response of oxygen-glucose deprivation (OGD) followed by reoxygenation (OGD/R) astrocyte model, and to provide a new target for immunoprotective treatment of cerebral infarction. We constructed the OGD/R rat astrocyte model, the astrocytes were treated by different concentrations of glucose (25, 50, 100 mM) intervened with/without Wnt3a (25 µg/ml). Microscope was used to observe the cell survival in rat astrocytes. The relative expression of inflammatory factors (TNF-a, IL-6, HIF-a) in rat astrocytes was detected by qRT-PCR. The expression of inflammatory factors such as TNF-a, IL-6 and HIF-a in rat astrocytes was increased after OGD/R treatment. The Wnt3a intervention promoted cell survival and decreased the expression of inflammatory factors in rat astrocytes induced by OGD/R. There is a neuroprotective effect that Wnt3a intervention could reduce inflammatory response in the OGD/R rat astrocyte model.


Glucose , Oxygen , Rats , Animals , Glucose/metabolism , Oxygen/pharmacology , Oxygen/metabolism , Astrocytes/metabolism , Interleukin-6/metabolism , Interleukin-6/pharmacology , Cerebral Infarction/metabolism
14.
Cytokine ; 169: 156288, 2023 09.
Article En | MEDLINE | ID: mdl-37441941

PURPOSE: To investigate the role of KLF4 in CI/R injury and whether Nrf2/Trx1 axis acted as a downstream pathway of KLF4 to exert the protective role in blood-brain barrier destruction after CI/R. METHODS: The tMCAO rat model in vivo was constructed and received the intracerebroventricular injection of 5 µg/kg and 10 µg/kg rhKLF4 before operation. TTC, brain water content, neurological function, ELISA, behavioral tests, HE, TUNEL, and qRT-PCR were performed to detect the protective role of KLF4 on CIR. Double-fluorescence staining and western blot were performed to determine the localization and spatiotemporal expression in brain tissues. Furthermore, we also analyzed the effect of KLF4 on the blood-brain barrier (BBB) and related mechanisms in vivo and in vitro. Nrf2 inhibitor tretinoin was applied, which was intraperitoneally injected into CIR rat. Evans blue staining was conducted. In vitro OGD/R models of bEnd.3 cells were also established, and received KLF4 overexpressed transfection and 12.5 µM tretinoin incubation. The permeability of bEnd.3 cells was evaluated by TEER and FITC-dextran leakage. BBB-related factors and oxidative stress were also analyzed, respectively. The tubular ability of KLF4 on OGD/R bEnd3 cells was also evaluated. RESULTS: In vivo study confirmed that KLF4 was expressed in astrocyte, and its content increased with time. KLF4 protected against brain injury caused by cerebral ischemia-reperfusion, reduced cerebral infarction area and oxidative stress levels, and promoted the recovery of behavioral ability in rats. Simultaneously, mechanism experiments confirmed that the repair effect of KLF4 on cerebral ischemia-reperfusion injury was closely related to the Nrf2/Trx1 pathway. KLF4 exerted the neuroprotective effect through upregulating Nrf2/Trx1 pathway. Consistent with in vivo animal study, in vitro study also confirmed the effect of KLF4 on the permeability of bEnd.3 cells after OGD/R injury through Nrf2/Trx1 pathway. CONCLUSION: Collectively, KLF4 played neuroprotective role in CIR induced MCAO and OGD/R, and the beneficial effects of KLF4 was partly linked to Nrf2/Trx1 pathway.


Brain Ischemia , Neuroprotective Agents , Reperfusion Injury , Animals , Mice , Rats , Blood-Brain Barrier , Cerebral Infarction/metabolism , Endothelial Cells/metabolism , Neuroprotective Agents/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Rats, Sprague-Dawley , Reperfusion , Reperfusion Injury/metabolism
15.
J Stroke Cerebrovasc Dis ; 32(8): 107205, 2023 Aug.
Article En | MEDLINE | ID: mdl-37290156

OBJECTIVES: This study was aimed at exploring whether klotho improved neurologic function in rats with cerebral infarction by inhibiting P38 mitogen-activated protein kinase (MAPK) activation and thus down-regulating aquaporin 4 (AQP4). METHODS: In this study, we induced intracerebral Klotho overexpression in 6-week-old Sprague Dawley rats by injecting lentivirus carrying full-length rat Klotho cDNA into the lateral ventricle of the brain, followed by middle cerebral artery occlusion (MCAO) surgery after three days. Neurologic function was evaluated by neurological deficit scores. Infarct volume was assessed by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. The expressions of Klotho, AQP4, and P38 MAPK were detected by Western blot and Immunofluorescence. RESULTS: when rats were subjected to cerebral ischemia, their neurologic function was impaired, the protein expressions of klotho downregulated, the protein expressions of AQP4 and P38 MAPK increased, and the ratios of AQP4 and P-P38-positive area were significantly increased compared with the sham group rats. LV-KL-induced Klotho overexpression greatly improved neurobehavioral deficits and reduced infarct volume in MCAO rats. Klotho overexpression significantly reduced AQP4 and P38 MAPK pathway-related protein expression levels and the ratios of P-P38 and AQP4-positive area in MCAO rats. In addition, SB203580, a P38 MAPK signal pathway inhibitor, improved neurobehavioral deficits, reduced infarct volume, downregulated the expressions levels of AQP4 and P38 MAPK, and reduced the size of P-P38 and AQP4-positive area in MCAO rats. CONCLUSION: Klotho could alleviate the infraction volume and neurological dysfunction in MCAO rats, and its mechanism may involve AQP4 expression downregulation by suppressing P38-MAPK activation.


Klotho Proteins , Signal Transduction , Stroke , Animals , Rats , Aquaporin 4/metabolism , Cerebral Infarction/drug therapy , Cerebral Infarction/metabolism , Cerebral Infarction/pathology , p38 Mitogen-Activated Protein Kinases/metabolism , Rats, Sprague-Dawley , Stroke/drug therapy , Stroke/metabolism , Stroke/pathology , Klotho Proteins/genetics
16.
Neuroscience ; 526: 144-163, 2023 08 21.
Article En | MEDLINE | ID: mdl-37391123

GPR81 is a G-protein coupled receptor (GPCR) discovered in 2001, but deorphanized only 7 years later, when its affinity for lactate as an endogenous ligand was demonstrated. More recently, GPR81 expression and distribution in the brain were also confirmed and the function of lactate as a volume transmitter has been suggested since then. These findings shed light on a new function of lactate acting as a signaling molecule in the central nervous system, in addition to its well-known role as a metabolic fuel for neurons. GPR81 seems to act as a metabolic sensor, coupling energy metabolism, synaptic activity, and blood flow. Activation of this receptor leads to Gi-mediated downregulation of adenylyl cyclase and subsequent reduction in cAMP levels, regulating several downstream pathways. Recent studies have also suggested the potential role of lactate as a neuroprotective agent, mainly under brain ischemic conditions. This effect is usually attributed to the metabolic role of lactate, but the underlying mechanisms need further investigation and could be related to lactate signaling via GPR81. The activation of GPR81 showed promising results for neuroprotection: it modulates many processes involved in the pathophysiology of ischemia. In this review, we summarize the history of GPR81, starting with its deorphanization; then, we discuss GPR81 expression and distribution, signaling transduction cascades, and neuroprotective roles. Lastly, we propose GPR81 as a potential target for the treatment of cerebral ischemia.


Brain Ischemia , Lactic Acid , Humans , Brain/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Cerebral Infarction/metabolism , Ischemia/metabolism , Lactic Acid/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
17.
Mol Neurobiol ; 60(7): 3741-3757, 2023 Jul.
Article En | MEDLINE | ID: mdl-36940077

Excessive activation of aldose reductase (AR) in the brain is a risk factor for aggravating cerebral ischemia injury. Epalrestat is the only AR inhibitor with proven safety and efficacy, which is used in the clinical treatment of diabetic neuropathy. However, the molecular mechanisms underlying the neuroprotection of epalrestat remain unknown in the ischemic brain. Recent studies have found that blood-brain barrier (BBB) damage was mainly caused by increased apoptosis and autophagy of brain microvascular endothelial cells (BMVECs) and decreased expression of tight junction proteins. Thus, we hypothesized that the protective effect of epalrestat is mainly related to regulating the survival of BMVECs and tight junction protein levels after cerebral ischemia. To test this hypothesis, a mouse model of cerebral ischemia was established by permanent middle cerebral artery ligation (pMCAL), and the mice were treated with epalrestat or saline as a control. Epalrestat reduced the ischemic volume, enhanced BBB function, and improved the neurobehavior after cerebral ischemia. In vitro studies revealed that epalrestat increased the expression of tight junction proteins, and reduced the levels of cleaved-caspase3 and LC3 proteins in mouse BMVECs (bEnd.3 cells) exposed to oxygen-glucose deprivation (OGD). In addition, bicalutamide (an AKT inhibitor) and rapamycin (an mTOR inhibitor) increased the epalrestat-induced reduction in apoptosis and autophagy related protein levels in bEnd.3 cells with OGD treatment. Our findings suggest that epalrestat improves BBB function, which may be accomplished by reducing AR activation, promoting tight junction proteins expression, and upregulating AKT/mTOR signaling pathway to inhibit apoptosis and autophagy in BMVECs.


Brain Injuries , Brain Ischemia , Mice , Animals , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Aldehyde Reductase/metabolism , Aldehyde Reductase/pharmacology , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Cerebral Infarction/metabolism , Brain Injuries/metabolism , Glucose/metabolism , Tight Junction Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism
18.
FASEB J ; 37(2): e22788, 2023 02.
Article En | MEDLINE | ID: mdl-36692424

Ischemic stroke is known to cause the accumulation of misfolded proteins and loss of calcium homeostasis, leading to impairment of endoplasmic reticulum (ER) function and activating the unfolded protein response (UPR). PARP16 is an active (ADP-ribosyl)transferase known tail-anchored ER transmembrane protein with a cytosolic catalytic domain. Here, we find PARP16 is highly expressed in ischemic cerebral hemisphere and oxygen-glucose deprivation/reoxygenation (OGD/R)-treated immortalized hippocampal neuronal cell HT22. Using an adeno-associated virus-mediated PARP16 knockdown approach in mice, we find PARP16 knockdown decreases infarct demarcations and has a better neurological outcome after ischemic stroke. Our data indicate PARP16 knockdown decreases ER stress and neuronal death caused by OGD/R, whereas PARP16 overexpression promotes ER stress-mediated cell damage in primary cortical neurons. Furthermore, PARP16 functions mechanistically as ADP-ribosyltransferase to modulate the level of ADP-ribosylation of the corresponding PERK and IRE1α arm of the UPR, and such modifications mediate activation of PERK and IRE1α. Indeed, pharmacological stimulation of the UPR using Brefeldin A partly counteracts PARP16 knockdown-mediated neuronal protection upon OGD/R treatment. In conclusion, PARP16 plays a crucial role in post-ischemic UPR and PARP16 knockdown alleviates brain injury after ischemic stroke. This study demonstrates the potential of the PARP16-PERK/IRE1α axis as a target for neuronal survival in ischemic stroke.


Brain Ischemia , Ischemic Stroke , Poly(ADP-ribose) Polymerases , Reperfusion Injury , Animals , Mice , Apoptosis , Brain Ischemia/metabolism , Cerebral Infarction/metabolism , Endoplasmic Reticulum Stress , Endoribonucleases/metabolism , Ischemic Stroke/metabolism , Neurons/metabolism , Oxygen/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Reperfusion Injury/metabolism , Unfolded Protein Response
19.
Sci Rep ; 13(1): 262, 2023 01 06.
Article En | MEDLINE | ID: mdl-36609640

Umbilical cord blood (UCB) transplantation shows proangiogenic effects and contributes to symptom amelioration in animal models of cerebral infarction. However, the effect of specific cell types within a heterogeneous UCB population are still controversial. OP9 is a stromal cell line used as feeder cells to promote the hematoendothelial differentiation of embryonic stem cells. Hence, we investigated the changes in angiogenic properties, underlying mechanisms, and impact on behavioral deficiencies caused by cerebral infarction in UCB co-cultured with OP9 for up to 24 h. In the network formation assay, only OP9 pre-conditioned UCB formed network structures. Single-cell RNA sequencing and flow cytometry analysis showed a prominent phenotypic shift toward M2 in the monocytic fraction of OP9 pre-conditioned UCB. Further, OP9 pre-conditioned UCB transplantation in mice models of cerebral infarction facilitated angiogenesis in the peri-infarct lesions and ameliorated the associated symptoms. In this study, we developed a strong, fast, and feasible method to augment the M2, tissue-protecting, pro-angiogenic features of UCB using OP9. The ameliorative effect of OP9-pre-conditioned UCB in vivo could be partly due to promotion of innate angiogenesis in peri-infarct lesions.


Fetal Blood , Stromal Cells , Mice , Animals , Stromal Cells/metabolism , Coculture Techniques , Cell Differentiation , Cerebral Infarction/therapy , Cerebral Infarction/metabolism , Infarction
20.
Mol Neurobiol ; 60(4): 2062-2069, 2023 Apr.
Article En | MEDLINE | ID: mdl-36596965

Stroke is a leading cause of death and disability worldwide. It is among the most common neurological disorders with an 8-10% lifetime risk. Ischemic stroke accounts for about 85% of all strokes and damages the brain tissue via various damaging mechanisms. Following cerebral ischemia, the disrupted blood-brain barrier (BBB) leads to cerebral edema formation caused by activation of oxidative stress, inflammation, and apoptosis, targeting primarily endothelial cells. Activation of the protective mechanisms might favor fewer damages to the neural tissue. MicroRNA (miR)-126 is an endothelial cell-specific miR involved in angiogenesis. MiR-126 orchestrates endothelial progenitor cell functions under hypoxic conditions and could inhibit ischemia-induced oxidative stress and inflammation. It alleviates the BBB disruption by preventing an augment in matrix metalloproteinase level and halting the decrease in the junctional proteins, including zonula occludens-1 (ZO-1), claudin-5, and occludin levels. Moreover, miR-126 enhances post-stroke angiogenesis and neurogenesis. This work provides a therapeutic perspective for miR-126 as a new approach to treating cerebral ischemia.


Brain Ischemia , MicroRNAs , Stroke , Humans , Endothelial Cells/metabolism , Brain Ischemia/metabolism , Stroke/metabolism , Cerebral Infarction/metabolism , Blood-Brain Barrier/metabolism , MicroRNAs/genetics , Infarction, Middle Cerebral Artery/metabolism
...